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Abstract 

Heavy metals, such as copper, zinc and cadmium, represent some of the most common and 

serious pollutants in coastal estuaries.  In the present study, we used a combination of linear and 

artificial neural network (ANN) modelling to detect and explore interactions among low-dose 

mixtures of these heavy metals and their impacts on fundamental physiological processes in 

tissues of the Eastern oyster, Crassostrea virginica.  Animals were exposed to Cd (0.001 – 0.400 

µM), Zn (0.001 – 3.059 µM) or Cu (0.002 – 0.787 µM), either alone or in combination for 1 to 

27 days.  We measured indicators of acid-base balance (hemolymph pH and total CO2), gas 

exchange (Po2), immunocompetence (total hemocyte counts, numbers of invasive bacteria), 

antioxidant status (glutathione, GSH), oxidative damage (lipid peroxidation; LPx), and metal 

accumulation in the gill and the hepatopancreas.  Linear analysis showed that oxidative 

membrane damage from tissue accumulation of environmental metals was correlated with 

impaired acid-base balance in oysters.  ANN analysis revealed interactions of metals with 

hemolymph acid-base chemistry in predicting oxidative damage that were not evident from 

linear analyses.  These results highlight the usefulness of machine learning approaches, such as 

ANNs, for improving our ability to recognize and understand the effects of sub-acute exposure to 

contaminant mixtures. 

 

Keywords:  heavy metals, artificial neural networks, Crassostrea virginica, lipid peroxidation, 

glutathione, acid-base balance, hemolymph PO2 

 

1. Introduction 

 

Industrialization and urbanization along the coastline of the US have substantially increased the 

amount and variety of anthropogenic pollutants entering estuarine ecosystems.  Among the most 

common of these contaminants, heavy metals are of particular concern because they persist in 

the environment and have a wide variety of adverse effects.  Developing biomarkers and 

predicting effects of contaminant mixtures, has garnered much attention in both human health 

and ecological risk assessments (Carpenter et al. 2002; Yang et al. 2007; Wang et al. 2008) with 

the general recognition that the relationship among these mixture components and their 

biological effects is both intricate and complex (Sexton et al. 2007).  For heavy metal mixtures 

this complexity is driven in part by the fact that many of these metals interact with a wide but 
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common set of cellular targets, but may differ in affinity for these targets by many orders of 

magnitude (Viarengo 1989a). 

We hypothesized that the relationship among heavy metals and their physiological effects might 

be detected and modelled using a combination of linear and artificial neural network (ANN) 

approaches.  ANNs have been used to develop predictive models of other complex systems such 

climate change (Cannon et al. 2002, among others) and disease status in humans based upon 

gene expression profiles (Khan et al. 2001; Linder et al. 2004; Dankbar et al. 2007, among 

others). 

To test this hypothesis, we characterized the physiological effects of environmentally-relevant 

low-dose mixtures of Cu, Cd, and Zn (Sanger et al. 1999), either alone or in combination for 

periods from 1 – 27 days, in the Eastern oyster, Crassostrea virginica.  This ecologically and 

economically important bivalve mollusc lives in close association with estuarine sediments 

where its sessile nature and filter-feeding habit maximize the accumulation of contaminants in 

their tissues in concentrations high above those found in the surrounding seawater (Jenny et al. 

2002). 

In oysters, as in other organisms, Cu, Cd and Zn exist as divalent cations which are free or 

complexed to different classes of biological ligands.  Cd is a trace metal with no known 

biological function, while Cu and Zn are essential elements and, as such, are required to maintain 

cellular homeostasis.  In oysters, the gill and the hepatopancreas (digestive gland) are the 

primary tissues involved in the accumulation and detoxification of heavy metals, such as Cu, Zn 

and Cd (Marigómez et al. 2002; Sokolova et al. 2005).  Heavy metals enhance the intracellular 

formation of toxic reactive oxygen species (ROS) (Stohs et al. 1995b; Ringwood et al. 1998; 

Geret et al. 2002b; Dailianis et al. 2005).  Thus, metal-binding proteins and antioxidant enzymes, 

such as glutathione (GSH) and metallothioneins (MTs) are important detoxification elements that 

are induced to maintain the balance between pro- and antioxidative systems in cells (Dovzhenko 

et al. 2005).  Indeed, studies have shown that surplus ROS can alter the structure of cell 

membranes by stimulating the peroxidation of membrane lipids.  Thus, for the present study, 

oysters were exposed to Cd, Zn, or Cu, either alone or in combination, for periods from 1 – 27 

days and indicators of antioxidant defense (GSH), oxidative damage (lipid peroxidation; LPx), 

immunocompetence (total hemocyte counts, numbers of invasive bacteria), as well as blood gas 

and acid-base balance (hemolymph PO2, pH, total CO2) were measured for each animal.  The 

experimental design optimized input data for ANN analysis, which requires little or no 
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understanding of the mechanistic associations of the measured variables, but does require 

considerable volumes of data. This design contrasts with traditional statistical approaches which 

require extensive knowledge of the system, but comparatively little data. Perhaps more 

succinctly traditional linear analysis fits data to models, but ANN’s extracts models from data.  

ANN’s do not require independence among the input variables (independent variables in linear 

regression). Furthermore, in the application of machine learning approaches, the preference is for 

limited or no replication of the experimental conditions, so the ANNs learn rather than 

memorize. For these and other reasons they have been used extensively in medical, engineering, 

physics and atmospheric sciences (Almeida, 2002, Cannon et al. 2002 Khan et al. 2001; Linder 

et al. 2004; Dankbar et al. 2007, Chapman  et al. 2009) . Detailed explanations of the approach 

can be found in Bishop (1996a,b Bishop 2006). Our approach was a compromise between the 

requirements of linear statistics and of machine learning provided by ANNs.  First, correlations 

among the experimental variables were examined by linear statistical tools to provide statistical 

power.  Subsequently, ANN analysis was employed to explore the higher dimensional 

interactions among metal mixtures on the oyster’s physiological response. 

 

2. Materials and Methods 

 

2.1. Animal collection and maintenance 

Adult Eastern oysters, Crassostrea virginica (Gmelin), from Taylor Shellfish Farms (Shelton, 

WA) were held for 30 days in well-aerated recirculating natural seawater systems at 25 ppt 

salinity and 20 – 22 º C on a 12 h light cycle.  During this period oysters were fed a mixed algal 

suspension (Shellfish Diet 1800, Reed Mariculture) every second day. 

 

2.2. Basic experimental protocol 

One day prior to the start of the experiment, 4 oysters were placed in each of 54 five L beakers.  

Beakers contained four L of well-aerated filtered (0.45 µm) seawater maintained at 25 ppt 

salinity and 18 ± 1 °C.  At the start of the 27 day experiment (Day 0), beakers were dosed with 

single or multiple metals at environmentally relevant doses (Table 1): Cd (0.001 – 0.400 µM), 

Zn (0.001 – 3.059 µM) or Cu (0.002 – 0.787 µM).  Thereafter, the seawater in each beaker was 

routinely exchanged every second day, at which time metals were replenished in each beaker to 

their predetermined concentrations, and algal suspension added to facilitate metal uptake by the 
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oysters.  Food was withheld from oysters at least 24 h before they were sampled. 

Sampling of oysters began on day 1 of the 27 day metal study, with 1 oyster sampled per day 

from each of 8 beakers.  Sampling began with beaker number one and continued to beaker 54, 

then back to beaker one, continuing for 27 days until all 216 samples had been exhausted.  The 

study design was not consistent with a typical dose-response model based on linear statistics; 

instead this design generated 216 individual treatments that ultimately could be analyzed by 

ANNs.  A total of 8 animals were found dead or moribund at the time of sampling; these oysters 

were not associated with any particular dosing regimen and were excluded from the study. 

Each sampled oyster was blotted dry with a paper towel and weight, length, and width were 

recorded.  Hemolymph (2 separate samples) was sampled anaerobically from the adductor 

muscle of each oyster using a 1 mL glass syringe fitted with a 23-ga needle.  The dead space in 

the needle and syringe was filled with nitrogen-saturated distilled water to reduce contamination 

of the sample by atmospheric oxygen; the syringe was placed on ice prior to sampling.  To gain 

access to the adductor muscle, the shell of the oyster was quickly notched along the posterior 

margin using pliers, exposing the muscle.  Immediately following hemolymph withdrawal, 

oysters were placed on ice for dissection and tissue processing.  Specific procedures are 

described below. 

 

2.3. Quantification of total hemocyte count (THC) and culturable bacteria in hemolymph  

Approximately 0.5 mL of hemolymph was withdrawn from the adductor muscle of each oyster.  

An aliquot of this sample was fixed with neutral buffered formaldehyde and hemocytes counted 

with a hemocytometer (Macey et al. 2008).  For total counts of culturable bacteria, a second 

aliquot of the original hemolymph sample was overlayed in marine agar on TSA supplemented 

with 2.0% NaCl; for total culturable Vibrio, a second 100 µL aliquot of hemolymph was 

overlayed in marine again and cultured on TCBS agar supplemented with 1.5% NaCl (Macey et 

al. 2008).  Data were expressed as total bacteria and Vibrio spp. mL-1 of hemolymph according 

to growth on TSA and TCBS plates, respectively. 

 

2.4. Hemolymph variables 

A second hemolymph sample was withdrawn from the adductor muscle of each oyster to assess 

hemolymph gas and acid-base chemistry.  All instruments were thermostatted to 18 ± 0.1 °C.  

The partial pressure of oxygen (PO2) in the hemolymph was determined with a Radiometer PHM 
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pH/blood gas monitor and PO2 electrode.  Hemolymph pH was determined with a Radiometer 

(BMS2 Mk2 Blood Micro System) capillary pH electrode and PHM pH/blood gas monitor that 

had been calibrated at experimental temperatures with precision Radiometer buffers.  Total 

carbon dioxide, i.e., all forms of CO2 including molecular CO2, HCO3
−, CO3

=, and carbamino 

CO2, in the hemolymph was determined with a Capni-Con 5 total CO2 analyzer (Cameron 

Instrument Company). 

 

2.5. Oyster dissection and tissue processing. 

The right valve of each oyster was removed by breaking the hinge of the shell and removing the 

gills and the hepatopancreas to separate weigh boats.  Tissues were minced and approximately 

0.02 g (minimum) and 0.05 g (maximum) samples of the minced tissues were transferred to 

separate cryotubes, flash frozen in liquid nitrogen and stored at −80 °C until they were used for 

the GSH, LPx and metal content assays (see below). 

 

2.6. Lipid peroxidation (LPx) and glutathione (GSH) assays. 

Lipid peroxidation (LPx) in the gill and hepatopancreas of C. virginica was measured using a 

colorimetric assay that quantifies lipid degradation products based on the formation of total 

thiobarbituric acid reactive substances (TBARS) with malondialdehyde (TBARS) as the standard 

(Ringwood et al. 1999b).  GSH concentrations of individual oyster tissues were determined using 

the glutathione reductase recycling assay described by Ringwood et al. (1999b). 

 

2.7. Analysis of metal content 

Tissues were digested in concentrated nitric acid at 160 °C at 210 psi and 225 watt for 6 min.  

Cooled samples were spiked with yttrium standard (10 ppm final concentration) and analyzed for 

Cu, Cd and Zn content by Inductively Coupled Plasma-Atomic Emission Spectroscopy.  The 

National Bureau of Standards (NBS) Mussel Reference Material #1974b and Pygmy Sperm 

Whale Reference Material # QC03-LH3 were analysed with the samples to verify the metal 

analysis; the percent recoveries over all batches were 101.67 ± 11.74, 101.87 ± 11.14, and 99.00 

± 10.99% (mean ± S.D.) for Cu, Zn and Cd, respectively, for the Whale Reference Material and 

106.78 ± 5.52, 95.74 ± 4.70, and 106.97 ± 9.21%, respectively, for the Mussel Reference 

Material. 
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2.8. Statistical analysis 

To determine the effect of metal exposure on the tissue accumulation of each metal and to assess 

potential relationships between tissue metal content and physiological responses, data were 

analyzed initially by linear statistics using SigmaStat 3.1 and SYSTAT 11 software.  

Correlations between tissue content of each metal and physiological measures were investigated 

using Pearson’s Product Moment Correlation procedure.  All tests for normality (Kolmogorov-

Smirnov test) or equal variances failed, therefore, correlation analyses were performed on rank 

transformed data.  One-way ANOVA was used to test for differences in concentrations of each 

metal between the gills and the hepatopancreas of oysters exposed to metals and was also used to 

test for differences between basal concentrations of each metal in each tissue of oysters not 

exposed to metals.  All tests for normality or equal variances failed, therefore, a Kruskal-Wallis 

ANOVA on Ranks test was used to test for significant differences.  Interactions between metal 

content of each tissue and physiological responses were assessed by analysis of variance 

(ANOVA) using General Linear Models (GLM) in SYSTAT 11.  Since all test for normality and 

equal variance failed, GLM on quantile-normalized data were used to test for significant 

interactions.  Each GLM consisted of 3 independent variables [tissue (gill or hepatopancreas) Cu, 

Zn and Cd] and one dependent variable [tissue (gill or hepatopancreas) TBARS].  Significance 

was assigned at p ≤ 0.05 for all analyses. Subsequently, ANNs were used to model potential 

interactions of tissue metal contents and hemolymph measures in predicting tissue oxidative 

damage (LPx) or antioxidant status (GSH).  Each of the ANNs consisted of 6 input variables 

[hemolymph pH, total CO2, PO2, and tissue (gill or hepatopancreas) Cu, Zn and Cd] with one 

output variable.  For each output variable (gill LPx, gill GSH, hepatopancreas LPx and 

hepatopancreas GSH), separate ANNs (n = 30) were developed using WebNeuralNet 1.0 

(Almeida 2002).  All variables were scaled to their non-parametric cumulative distributions by 

replacing the raw values with their rank/n (n = total data points) to overcome scale differences.  

The transformed data were then divided into two sets by random allocation; one comprising 90% 

of the records to train the ANN, while the remaining data were used as a cross validation (CV) 

set.  A new subset of data was randomly selected before training each ANN to avoid bias in the 

selection of the CV set.  Each ANN was first trained using both the input and output data of the 

training set, which consisted of 187 data points from each of the input and output variables.  To 

prevent over training the ANNs, an early stopping procedure (Almeida 2002) was employed.  

After each ANN was trained, the withheld data points from the CV set were analyzed to evaluate 
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the predictive capabilities of the ANN.  In essence, this was achieved by calculating the R-

squared (R2) values for the outputs of each ANN and the observed values of the accompanying 

CV sets, and comparing the CV set predictions with those generated by the appropriate ANN.  

Next, the impact of each input variable (hemolymph pH, total CO2, PO2, tissue Cu, Cd, Zn) was 

examined by computing the sensitivities of the outputs to changes in the inputs (Heshem, 1992) 

for all ANNs in which the model and CV set R2 value were greater than the median value for all 

30 ANNs.  The interactions of the inputs on the outputs were examined using a derivative of the 

approach of Cannon and McKendry (2002), where the two variables with the highest sensitivities 

were allowed to vary in 5% increments over the scaled range and all other input variables were 

held to their mean (50%) values.  These ‘artificial’ data were then fed to the ANN models with 

the largest R2 values to predict the output value and the results plotted on three-dimensional 

surfaces. 

 

3. Results 

 

3.1. Metal accumulation in the tissues of C. virginica. 

Overall, measured concentrations of Cu, Cd and Zn (µg g−1 wet weight tissue) were higher in the 

hepatopancreas than in the gills of oysters exposed to metals (one-way ANOVA; P < 0.001, < 

0.001, = 0.003 and for Cu, Cd and Zn, respectively).  Furthermore, basal concentrations of Cu 

and Zn were noticeably higher and more variable in the gills and the hepatopancreas when 

compared to basal Cd concentrations (P < 0.001).  Tissue levels of the essential metals Cu and 

Zn were independent of the ambient water concentrations of the metals over the entire range of 

exposures (Fig. 1A, B).  In contrast, cadmium, a non-essential metal, was the only metal that 

accumulated linearly with time in the gill (r = 0.828; P < 0.001) and the hepatopancreas (r = 

0.793; P < 0.001) over the full range of Cd exposure concentrations (Fig. 1C).  Cu contents were 

directly related to those of Zn in the gill (n = 208, r = 0.0713, P < 0.001) and in the 

hepatopancreas (n = 208, r = 0.649, P < 0.001).  To a lesser degree, Cu content positively 

correlated with Cd content in the gill (r = 0.216, P = 0.0018), but not in the hepatopancreas.  No 

other significant correlations were observed between measured metals in either tissue. 

 

3.2. Correlation of measured tissue metals with physiological traits of C. virginica. 

Since each of the 216 test animals represented a unique set of metal exposure parameters 
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(combination of metals, dose levels and duration), the resulting values could not be represented 

by standard descriptive statistics.  Physiological data obtained from the 208 animals that survived 

the exposure period and yielded tissue samples (Figure 2) generally fell within ranges reported 

for C. virginica in control or low level metal exposures (Viarengo et al. 1990; Roméo et al. 1997; 

Ringwood et al. 1998; Ringwood et al. 1999a).  Correlations between metal exposures and 

physiological measures were investigated using Pearson’s Product Moment Correlation 

procedure.  Exposure to Zn was negatively correlated with TBARS, indicators of oxidative 

membrane damage in the hepatopancreas, (r = −0.150, P = 0.0304), but not in the gill.  No other 

significant relationships were noted between metal exposures and physiological measurements in 

oysters (data not shown).  In contrast, tissue concentrations of individual metals were associated 

with several physiological measurements (Fig. 3A, B), most notably TBARS.  In the gill, Cu (r = 

0.527, P < 0.001), Cd (r = 0.204, P = 0.0032) and Zn (r = 0.256, P < 0.001) correlated positively 

with TBARS, as did Cu (r = 0.618, P < 0.001) and Zn (r = 0.247, P < 0.001) in the 

hepatopancreas.  By comparison, metal associations with GSH were mixed.  In the gill only Cu 

(r = 0.203, P = 0.0033) but not Zn or Cd positively correlated with antioxidant GSH, while both 

Cd (r = −0.149, P < 0.001) and Zn (r = −0.95, P = 0.0049) in the hepatopancreas were negatively 

associated with GSH in that tissue. 

Several other significant correlations were noted (Fig. 3A, B).  Gill Cd was associated with 

increased hemolymph pH (r = 0.159, p = 0.0221) while hepatopancreas Cu correlated with 

increased hemolymph pH (and r = 0.284, P < 0.001, respectively) and decreased total CO2 (r = 

−0.137, P = 0.0477).  Of the three metals, only Cu was associated with markers of immune 

function.  Gill Cu was positively correlated with total culturable bacteria in the hemolymph (r = 

0.138, P = 0.0461), while hepatopancreas Cu was negatively associated with THC (r = −0.180, P 

= 0.0092). 

In the hepatopancreas there was a significant interaction between measured Cu and Zn when 

predicting oxidative damage, measured as TBARS (Table 2, GLM, P = 0.014), but not in the gill 

tissue.  No additional significant interactions between the content of metals measured in gill and 

hepatopancreas were evident when predicting other physiological measurements of oysters, such 

as GSH, THC, hemolymph pH or total CO2. 

 

3.3. Artificial neural network analysis (ANN). 

Because interactions among the metals were detected by linear analysis, ANNs were used to 
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explore these interactions in predicting LPx (measured as TBARS) and compared to models 

predicting GSH in the hepatopancreas and gill.  The three respiratory measurements hemolymph 

pH, total CO2 and PO2 were included as input variables because the two acid-base components 

(pH, total CO2) responded to tissue contents of all three metals.  ANN models could more 

reasonably predict hepatopancreas than gill TBARS based on the metal content of the respective 

tissues.  The mean R2 value for hepatopancreas TBARS over all the ANN models was 0.50 ± 

0.11 (Mean ± SD, n = 30), with some of the values approaching 0.7 (Table 3).  By comparison, 

the mean R2 value for gill TBARS over all models was 0.35 ± 0.11 (Table 4).  Similarly, the 

cross-validation R2 values for models predicting TBARS were 0.53 ± 0.14 (Table 3) and 0.24 ± 

0.16 (Table 4) for the hepatopancreas and the gills, respectively, confirming the relative validity 

of the predictions made by each model.  Furthermore, hepatopancreas TBARS appeared to be 

more consistently predictable than gill TBARS, as the variation in R2 and cross-validation R2 

values with respect to the mean in each model were smaller for the hepatopancreas than for the 

gills (Tables 3, 4). 

In contrast, GSH in both the gills and the hepatopancreas was poorly predicted by the input 

variables used for ANN modelling.  The mean R2 values for predicting GSH were only 0.07 ± 

0.06 (Table 3) and 0.14 ± 0.11 (Table 4) for the gills and the hepatopancreas, respectively.  

Likewise, the mean cross-validation R2 values and their variances for models predicting GSH in 

both tissue types were very low (Tables 3, 4). 

A sensitivity analysis was conducted for the top performing ANNs to determine the contribution 

of each of the 6 input variables [hemolymph pH, total CO2, PO2, and tissue (gill or 

hepatopancreas) Cu, Cd or Zn] to the overall variance observed in each model predicting tissue 

TBARS.  As GSH was poorly predicted by all ANN models in the present study, a sensitivity 

analysis was not conducted for these models.  The best performing ANNs had model and cross-

validation R2 values greater than the median value for all 30 ANNs.  Models 6 and 7 were chosen 

from the ANNs predicting hepatopancreas TBARS (Table 3), while Model 8 was chosen from 

ANNs predicting gill TBARS (Table 4).  Sensitivity analysis reveals that in the hepatopancreas, 

the partial pressure of oxygen (PO2) in the hemolymph is a dominant variable in both models 

(Fig. 4).  Model 6 has the larger mean R2 value.  Model 7 has the larger cross-validation R2 value 

and a smaller number of nodes (Table 4) and in most cases we would choose Model 7 over 6 for 

these reasons.  However, as Model 6 indicates that Cu is more important than Zn in predicting 

TBARS (indicating LPx) and as this model confirms findings from the linear statistical analysis, 
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we would suggest that this is the preferred ANN model.  Model 6 suggests that LPx in the 

hepatopancreas is more sensitive to changes in tissue Cu and Cd, and to hemolymph PO2, than to 

any of the other measured variables (Fig. 4). 

Sensitivity analysis indicated that each of the input variables contributed to the overall variance 

observed in Model 8 in predicting gill TBARS (Fig. 5).  In the gill, as in the hepatopancreas, it is 

clear that the degree of oxidative membrane damage is more sensitive to changes in tissue Cu 

than to other input variables, but hemolymph pH, total CO2 and PO2 also make strong 

contributions to predicting TBARS.  Moreover, summed Cu, Zn and Cd concentrations in both 

tissues appear to make significant contributions towards the overall variance observed in each 

model, emphasizing the cumulative detrimental effects of these metals on membrane integrity. 

The interactions of the more sensitive input variables (tissue Cu, hemolymph pH and hemolymph 

PO2) in predicting TBARS in the gills and the hepatopancreas were graphically illustrated (Fig. 

6A, B) using a modified form of the sensitivity analysis described by Cannon and McKendry 

(2002).  Oxidative damage in the gill (TBARS) increased as hemolymph pH and tissue Cu 

concentrations increased and the effects are non-linear, but not strongly so (Fig. 6A).  Similarly, 

hepatopancreas TBARS increased with increasing PO2 in the hemolymph and with 

hepatopancreas Cu (Fig. 6B).  These graphical surfaces clearly suggest complex, non-linear 

interactions between tissue Cu content and hemolymph pH or PO2 in predicting tissue TBARS.  

Furthermore, the overall TBARS response is consistent with an increasingly oxidative 

environment. 

 

4. Discussion 

 

ANN models generated in the present study demonstrated that the responses of key toxicological 

indicators can be modelled and predicted from an appropriate set of input variables.  While linear 

analyses provided correlative values of some individual metals to changes in hemolymph gasses 

and pH, ANN analysis suggested that the level of damage to cellular membranes was sensitive to 

tissue content of all three metals and strongly depended on other physiological measures, such as 

changes in hemolymph pH and PO2 (Fig. 6).  To our knowledge, this is the first study to show 

important metal-metal interactions as well as interactions of metal content with hemolymph gas 

and acid-base chemistry in predicting membrane damage in molluscs.  It is particularly 

noteworthy that where low tissue Cu is accompanied by low pH or low PO2 both hepatopancreas 
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and gill manifest the lowest predicted level of TBARS, while in those tissues with high Cu 

content along with high pH or high PO2, the reverse is observed (Fig. 6).  This is in keeping with 

our understanding of the response of TBARS to redox conditions, and the overall topography of 

the predicted response clearly suggests a non-linear interaction between metal content, 

hemolymph acid-base variables and TBARS.  The contributions of hemolymph variables to the 

predictive power of the ANN models as observed in the present study could be explained by 

changes in ventilation rate of oysters as function of metal exposure or tissue burden, as reported 

for tropical oysters Crassostrea belcheri exposed to Cu (Elfwing et al. 2002).  Alternatively, 

tissue metal burdens may be limited by ventilatory activity in bivalves as reported for Cd uptake 

in the Asiatic clam, Corbicula fluminea (Massabuau et al. 2003).   Certainly, the resulting 

changes in gas exchange and acid-base physiology of oysters could influence a variety of 

biochemical processes, including the deposition of shell that is essential to oyster growth  (Booth 

et al. 1984; Burnett 1988).  

While linear regression techniques can generate response-surface plots, they cannot interrogate 

non-linear dynamics similar to those in Fig 6 without human intervention specifying the structure 

of the relationships. The advantage of the ANN’s is that the mathematical architecture is 

infinitely flexible and does not require human intervention (e.g. bias).  The various models 

produced by the analysis are not viewed as solutions, but rather as hypotheses of relationships 

amenable to further empirical tests. 

In the present study, Cu, Zn and Cd tissue contents correlated with significant changes in LPx, as 

measured by elevated tissue levels of total TBARS.  The influence of transition metals such as 

Cu on oxidative processes, resulting in the production of oxyradicals, has been described, and it 

is suggested that cupric ions are involved in both the initiation and propagation steps of LPx 

(reviewed by Viarengo 1989a).  In fact, increases in LPx following exposure to Cu have been 

documented in the hard clam Ruditapes decussatus (Roméo et al. 1997), the Eastern oyster 

Crassostrea virginica (Ringwood et al. 1998), and the mussels Mytilus galloprovincialis 

(Viarengo et al. 1990) and Mytilus edulis (Geret et al. 2002a).  While excess Cu can mediate free 

radical production directly via redox cycling, oxyradicals may also be formed indirectly via 

cupric ions binding to and adversely affecting metal-requiring antioxidants, such as GSH and 

MT (Ringwood et al. 1999a; Valko et al. 2005).  In fact, it has been strongly suggested that there 

are multiple processes that bind copper and reduce its cellular toxicity (Valko et al. 2005).  

Conversely, non-redox metals, such as Cd, are unable to generate free radicals directly and 
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indirectly cause free radical-induced damage to important cellular macromolecules, particularly 

various complexes of the electron transport chain in mitochondria, and inhibit important cellular 

antioxidant enzymes and proteins, which may, in turn, stimulate LPx through oxidation of 

polyunsaturated fatty acids (Stohs et al. 1995a; Stohs et al. 2000; Dorta et al. 2003; Wang et al. 

2004).  The inverse association of Zn and Cd with GSH in the hepatopancreas observed in our 

study supports the idea that GSH provides early protection against oxidative stress from 

exposure to these metals, by binding of these metals to GSH or inhibition of GHS synthesis by 

these metals, until MTs can be induced (Quig 1998; Ringwood et al. 1998).  That this effect was 

not noted for Cu in this study supports the notion that Cu ions, which can undergo redox cycling, 

are involved in both the initiation and propagation steps of LPx via the direct formation of 

reactive oxygen species, whereas Cd and Zn ions, which do not undergo redox cycling, stimulate 

LPx indirectly by binding to and inhibiting cellular antioxidants, such as GSH (Viarengo 1989a).  

This does not however exclude the possibility of the formation of Cu-GSH complexes, 

particularly since –SH groups of most metabolites and enzymes, including GSH, have a higher 

affinity for Cu than Cd or Zn (Viarengo 1989b).  In fact, the discovery that the upper limit of 

“free” pools of Cu are far less than a single ion per cell strongly suggests that there is significant 

overcapacity for chelation of Cu in the cell and that multiple cellular antioxidants exist that bind 

Cu (Valko et al. 2005).  However, Ringwood et al. (1998)  suggested that conditions that cause 

depletion of important cellular antioxidants, such as GSH and MT, may enhance pollutant 

toxicity, suggesting that the impacts of exposure to metal mixtures are complex and potentially 

compounding.  Indeed, the significant correlation between tissue contents of Cd and LPx as well 

as the general linear model identification of Zn-Cu interactions in predicting LPx of oysters in 

the present study supports this notion. 

Cd suppresses the activity of many antioxidant enzymes and can displace Cu and Fe from 

cytoplasmic and membrane proteins which may then participate in ROS-producing Fenton 

reactions (Flipič et al. 2006).  More specifically, Engel (1999) demonstrated that Cu can displace 

Cd from MT when oysters are exposed to these trace metals in combination, but that Cd is not 

lost from the tissues of the oyster.  Furthermore, it is postulated that MT gene expression in 

oysters is regulated via a Zn-sensitive inhibitor, as is the case for regulation of MT gene 

expression in mice (Roesijadi 1996).  Although MT induction via the displacement of Zn has yet 

to be empirically demonstrated in oysters, it is possible that this sort of metal-metal exchange 

reaction is responsible for the Zn-Cu interactions observed in oysters in the present study when 
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predicting tissue LPx. 

The approach of combining general linear models and ANN analysis has revealed important 

metal-metal interactions as well as interactions of metal content with hemolymph gas and acid-

base chemistry (hemolymph PO2 as well as pH and total CO2) in predicting peroxidation of 

membrane lipids that were not evident from linear analyses.  These results support a growing 

body of evidence implicating the role of heavy metals in the peroxidation of membrane lipids 

and the disruption of important cellular antioxidants that play key roles in protecting cells against 

oxidative damage.  This study also highlights the usefulness of machine learning approaches, 

such as ANNs, for improving our ability to recognize and understand the effects of sub-acute 

exposure to environmentally relevant concentrations of mixed contaminants. 
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Figure Legends 

 

Figure 1.  (A) The tissue concentrations of Cu measured in the gill and the hepatopancreas of 

Crassostrea virginica held in Cu alone or in combination with other metals for 1 – 27 days.  

Total waterborne exposure to Cu (x-axis) is expressed as water concentration of Cu (µM) *days 

of exposure.    Concentrations of Zn (B) and Cd (C) in the same tissues are displayed as a 

function of total waterborne exposure to Zn and Cd, respectively.   

 

Figure 2.  Box-and-whiskers plots of data from all experimental animals (n = 208) for each 

major physiological variable measured in this study.  (A) TBARS and GSH values for the gill 

and the hepatopancreas (Hepato), (B) total hemocyte count (THC), (C) hemolymph PO2 and total 

CO2, (D) hemolymph pH, and (E) colony-forming units (CFU) mL-1 hemolymph on TSA or 
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TCBS agar.  Box boundaries indicate 25th and 75th percentile, the line within the box marks the 

median value, and whiskers indicate the 10th and 90th percentiles.  All values, including outliers 

are depicted. 

 

Figure 3.  Correlation coefficients (r-values) for significant associations between physiological 

measurements and measured metals in (A) the gill and (B) the hepatopancreas of Crassostrea 

virginica following exposure to each metal alone and in combinations for a period of 1 – 27 

days.  Analysis was performed using the Pearson Product Moment Correlation procedure on rank 

transformed data and significance was assigned at P<0.05.  Non-significant interactions are not 

shown. 

 

Figure 4.  Sensitivities of TBARS in hepatopancreas to the input variables (metal contents, 

hemolymph pH, PO2 and total CO2) for the best performing models 6 and 7 from the ANN 

analysis. 

 

Figure 5.  Sensitivities of TBARS in the gill to the input variables (metal contents, hemolymph 

pH, PO2 and total CO2) for the best performing model 8 from the ANN analysis. 

Figure 6.  Theoretical projections of the response of TBARS to changes in the exposure levels of 

the indicated variable on the x and y axes.  All variables have been scaled to their non-parametric 

values where 0 indicates the minimum and 1 indicates the maximum values observed in the data. 

(see text). 
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Table 1.  Concentrations (µM) of CuCl2, ZnCl2 and CdCl2 added to each beaker during the 27 

day oyster metal challenge experiment. 

Beaker # Zinc Copper Cadmium 
1 0.049 0.000 0.214 
2 0.196 0.315 0.000 
3 0.306 0.002 0.037 
4 1.101 0.066 0.044 
5 3.059 0.044 0.010 
6 0.000 0.000 0.000 
7 2.447 0.050 0.000 
8 0.000 0.197 0.013 
9 0.092 0.000 0.062 
10 0.000 0.000 0.025 
11 0.306 0.079 0.000 
12 1.835 0.598 0.267 
13 1.590 0.787 0.002 
14 0.000 0.039 0.004 
15 1.223 0.017 0.231 
16 2.080 0.000 0.004 
17 0.000 0.010 0.006 
18 0.000 0.000 0.000 
19 0.765 0.000 0.111 
20 0.000 0.220 0.400 
21 0.040 0.000 0.044 
22 0.000 0.000 0.000 
23 0.000 0.000 0.302 
24 0.979 0.409 0.000 
25 0.031 0.008 0.004 
26 0.171 0.504 0.178 
27 0.428 0.000 0.000 
28 0.000 0.252 0.445 
29 0.015 0.004 0.125 
30 0.012 0.000 0.000 
31 0.000 0.000 0.160 
32 0.110 0.028 0.016 
33 1.468 0.110 0.001 
34 2.325 0.007 0.000 
35 0.006 0.472 0.320 
36 2.753 0.000 0.000 
37 0.000 0.003 0.000 
38 0.000 0.013 0.338 
39 0.000 0.001 0.000 
40 2.202 0.000 0.028 
41 0.000 0.157 0.007 
42 0.000 0.024 0.356 
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43 0.003 0.000 0.000 
44 0.028 0.283 0.000 
45 0.067 0.567 0.007 
46 0.000 0.708 0.000 
47 0.153 0.006 0.000 
48 0.612 0.000 0.089 
49 0.000 0.079 0.000 
50 1.957 0.629 0.285 
51 0.049 0.013 0.142 
52 0.257 0.535 0.002 
53 0.856 0.378 0.000 
54 0.024 0.000 0.022 
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Table 2.  Assessment of interactions between metal contents of hepatopancreas when predicting 

oxidation damage, measured as TBARS (General Linear Models).  * significant interactions 

(P<0.05). 

 
Effect Coefficient STD Error STD Tolerance t P(2 Tail) 

   Coefficient 

Constant 2.894 10.174 0.000 .0.284 0.777 

Cu 1.309 0.416 1.309 0.045 3.149 0.003* 

Zn 0.777 0.399 0.777 0.049 1.949 0.056 

Cd -0.043 0.276 -0.043 0.102 -0.156 0.877 

Cu*Zn -0.026 0.010 -1.668 0.018 -2.525 0.014* 

Cu*Cd -0.004 0.011 -0.207 0.024 -0.360 0.720 

Zn*Cd -0.015 0.011 -0.809 0.022 -1.346 0.183 

Cu*Zn*Cd 0.00 0.000 1.251 0.011 1.515 0.135 
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Table 3.  ANN (n = 30) analysis of TBARS and GSH levels in the hepatopancreas of oysters 

exposed to Cu, Zn and/or Cd. 

 Lipid Peroxidation (TBARS)    Glutathione (GSH)  
Model  # Nodes Model R2 CV R2  #Nodes Model R2 CV R2  

1 9 0.4289 0.2652 9 0.1349 0.0866 

2 9 0.3715 0.7326 7 0.1441 0.1110 

3 5 0.6957 0.3642 5 0.3667 0.1649 

4 7 0.5006 0.4938 5 0.0864 0.0328 

5 7 0.3917 0.6919 5 0.0720 0.2296 

6 7 0.6465 0.4681 7 0.1176 0.1654 

7 5 0.6072 0.7002 7 0.3028 0.0688 

8 5 0.3979 0.6905 9 0.1172 0.3552 

9 7 0.5649 0.7380 6 0.3948 0.0058 

10 5 0.6035 0.6459 7 0.0586 0.1656 

11 6 0.6075 0.5286 5 0.1056 0.2849 

12 5 0.6124 0.6212 11 0.1279 0.3194 

13 7 0.4208 0.8799 7 0.1111 0.0151 

14 5 0.3779 0.5179 5 0.0775 0.0807 

15 5 0.4201 0.6586 7 0.1033 0.2656 

16 5 0.4052 0.5568 5 0.3134 0.3727 

17 5 0.6587 0.3128 5 0.2803 0.1421 

18 5 0.6269 0.4792 5 0.0992 0.1796 

19 5 0.2801 0.5103 8 0.1201 0.1013 

20 6 0.4136 0.5071 5 0.0255 0.2573 

21 5 0.6408 0.3670 9 0.1422 0.0052 

22 5 0.3890 0.5743 5 0.3510 0.4110 

23 5 0.6245 0.4559 6 0.1006 0.0303 

24 5 0.5942 0.4939 7 0.0676 0.0754 

25 5 0.4384 0.4662 5 0.1239 0.0052 

26 5 0.4184 0.4533 6 0.3116 0.0455 

27 7 0.5060 0.5056 5 0.0111 0.0003 

28 5 0.4105 0.6626 5 0.0197 0.0169 

29 5 0.3373 0.3752 6 0.1104 0.0000 

30 7 0.6149 0.2975 5 0.0427 0.0432 

Mean 5.8000 0.5002 0.5338 6.3000 0.1480 0.1346 
SD 1.2149 0.1178 0.1464 1.6006 0.1100 0.1247
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Table 4.  ANN (n = 30) analysis of TBARS and GSH levels in the gills of oysters exposed to 

Cu, Zn and/or Cd. 

 Lipid Peroxidation (TBARS)  Glutathione (GSH) 
Model  #Nodes Model R2 CV R2  #Nodes Model R2  CV R2 

1 5 0.2538 0.0007 9 0.0797 0.0154 

2 7 0.2423 0.1488 7 0.0179 0.0647 

3 7 0.2578 0.4011 9 0.0635 0.0173 

4 6 0.2405 0.1909 5 0.0029 0.0504 

5 5 0.1802 0.3001 7 0.0314 0.0003 

6 7 0.2687 0.4040 7 0.0726 0.0044 

7 8 0.3386 0.2644 8 0.0843 0.0459 

8 8 0.4818 0.2464 5 0.0471 0.0413 

9 7 0.1684 0.0625 10 0.0697 0.0393 

10 11 0.4871 0.2322 9 0.2961 0.0250 

11 5 0.4528 0.2011 7 0.0223 0.1310 

12 6 0.2826 0.4182 7 0.0674 0.0007 

13 6 0.4153 0.4901 6 0.0178 0.1964 

14 5 0.5444 0.0489 5 0.0526 0.0022 

15 7 0.4401 0.1768 5 0.0498 0.1191 

16 8 0.3297 0.2637 11 0.0588 0.0771 

17 5 0.4234 0.4465 6 0.0650 0.1535 

18 7 0.5074 0.1323 6 0.0344 0.0139 

19 9 0.3102 0.1496 7 0.1644 0.0249 

20 5 0.3989 0.4732 5 0.0346 0.0899 

21 8 0.2456 0.3080 7 0.0346 0.0029 

22 5 0.3934 0.5798 5 0.0758 0.0025 

23 5 0.5077 0.0112 7 0.0554 0.0097 

24 5 0.1863 0.2495 5 0.0793 0.0159 

25 5 0.3005 0.0058 8 0.0431 0.0394 

26 7 0.2522 0.1038 10 0.0694 0.0328 

27 9 0.2899 0.3309 11 0.0732 0.0266 

28 5 0.2295 0.2209 9 0.1984 0.0519 

29 5 0.4402 0.5114 7 0.1516 0.0122 

30 5 0.5173 0.0320 8 0.0652 0.1652 

Mean 6.4333 0.3462 0.2468 7.2667 0.0726 0.0491 
SD 1.5906 0.1139 0.1641 1.8370 0.0597 0.0536 
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Figure 1 
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Figure 5 
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Figure 6 

 
 


